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LONG-TERM GOALS 
 
This project’s long-term goal is the application and refinement of population density estimation 
methods based on detections of marine mammal vocalizations combined with propagation modeling. 
The density estimation method is applied to a novel acoustic data set, collected by a single 
hydrophone, to estimate the population density of false killer whales (Pseudorca crassidens) off of the 
Kona coast of the Island of Hawai’i.  
 
OBJECTIVES 
 
The objectives of this research are to apply existing methods for cetacean density estimation from 
passive acoustic recordings made by single sensors, to novel data sets and cetacean species, as well as 
refine the existing techniques in order to develop a more generalized model that can be applied to 
many species in different environmental scenarios. The chosen study area is well suited to the 
development of techniques that incorporate accurate modeling of sound propagation due to the 
complexities of its environment. Moreover, the target species chosen for this work, the false killer 
whale, suffers from interaction with the fisheries industry and its population has been reported to have 
declined in the past 20 years. Studies of abundance estimate of false killer whales in Hawai’i through 
mark recapture methods will provide comparable results to the ones obtained by this project. The 
ultimate goal is to contribute to the development of population density estimation methodologies that 
will be readily available to those involved in marine mammal research, monitoring, and mitigation. 
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APPROACH 
 
Approach to Estimating Population Density 
The methodology employed in this study to estimate the population density of false killer whales off 
Kona, Hawai’i, is based on the works of Zimmer et al. (2008), Marques et al. (2009), and Küsel et al. 
(2011). The density estimator formula given by Marques et al. (2009) is applied here for the case of 
one sensor, yielding the following formulation: 
 
                                                           𝑫� = 𝒏𝒄(𝟏−𝒄�)

𝝅𝒘𝟐𝑷�𝑻𝒓�
.                                                        (1) 

 
In equation (1), nc corresponds to the total number of auto-detected clicks in some time period T. The 
parameter �̂� accounts for the rate of false positive detections. The maximum distance, beyond which 
we don’t expect to detect any calls, is given by w. The cue production rate is dependent on available 
studies and information on animal acoustic behavior. More specifically, a cue is defined in this study 
as an echolocation click, which has been used as a preferred cue type for density estimation studies 
from single-sensor data sets. Finally, the most important parameter in equation (1) for our 
methodology is the average probability of detection, 𝑃�. Because detection distances are not realizable 
from single-sensor data, the average detection probability is estimated in a Monte Carlo simulation 
using the sonar equation along with transmission loss calculations to estimate the received signal-to-
noise ratio (SNR) of tens of thousands of click realizations. In the Monte Carlo simulation, clicks are 
randomly distributed in 3D space inside a circular area of radius w around the sensor location. 
Simulated SNRs are then compared to those measured from the data set in a realization of the detection 
function, which gives a probability that the simulated SNR would be detected. The average probability 
of detection from all Monte Carlo realizations gives 𝑃� to be used in equation (1). Finally, by 
combining the total number of detected clicks, the proportion of false positive detections, the total time 
of data analyzed, and the average click production rate to the average probability of detection we arrive 
at an estimate of the population. The density estimation methodology is illustrated in Fig. 1. 
 
Potential Problems in the Estimation of Detection Probability 
Continuous-wave (CW) analysis, that is, single-frequency analysis, is inherent to basic forms of the 
passive sonar equation. In the analysis detailed above it is typical to calculate transmission loss only at 
the center frequency of the click. This is then used to estimate received SNRs. However, many 
echolocation clicks can be very broadband in nature, with 10-dB bandwidths of 20 to 40 kHz or more. 
Recently Ainslie (2013) showed by means of analytical formulations that considering transmission loss 
by using CW analysis with the click’s center frequency while disregarding its bandwidth introduces 
bias to detection probabilities and hence to population density estimates. He further suggested using a 
broadband correction factor in the passive sonar equation to avoid errors in estimates caused by huge 
call bandwidths. 
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Figure 1. Summary of single-sensor population density estimation methodology. 
 
In view of the potential issue described above, we examine the methodology that has been used to 
estimate detection probabilities of highly broadband clicks recorded by single instruments. Using 
simple modeling experiments based on synthetic and real data sets that have highly broadband signals, 
we quantify the bias in the sonar equation estimates of detection probability and its effect on density 
estimates. Furthermore, we discuss the usage of transmission loss as an appropriate measure for 
calculating the SNR of received clicks, as well as the usage of complex propagation models that 
require, most often nonexistent, detailed environmental information. Lastly we also look into the 
effects of including multipath clicks in density estimates.  
 
Population Density Estimation of False Killer Whales off Kona, Hawai’i 
A test case using a real data set containing highly broadband false killer whale (Pseudorca crassidens) 
clicks recorded off the Kona coast of Hawai’i was used to further investigate the single-sensor density 
estimation methodology. In this case, whale acoustic and diving behaviors were also incorporated into 
the model. From literature information on the target species’ diving behavior when emitting sounds, a 
3D random distribution of simulated animals was created (Fig. 2), taking into account their orientations 
with respect to the hydrophone. The simulated animals are placed inside a circle in which the center is 
the hydrophone location and the radius corresponds to the maximum estimated detection distance for 
false killer whale clicks in the local environment, which, for simulation purposes, is taken to be 10 km. 
Source level is taken as a distribution based on minimum and maximum on-axis values reported in the 
literature (Madsen et al., 2004). Information on directionality loss due to the animal’s beam pattern is 
also taken from the literature (Au et al., 1995). Ambient noise levels were measured from the acoustic 
data set. Transmission loss is calculated here as has been done before (Küsel et al., 2011), that is, using 
an acoustic propagation model, and also by calculating arrival times and amplitudes and convolving 
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with a false killer whale source click, as is described above in creating a synthetic data set. Information 
on source level, directionality loss, ambient noise and transmission loss is then combined in the sonar 
equation to estimate SNRs of thousands of click realizations. The remainder of the analysis follows 
that described above in the section Approach to Estimating Population Density. 
 

 
Figure 2. Kona Coast of Hawai’i showing location of HARP deployment (white dot in the center of 

semi-circle) and random distribution of 10,000 simulated whale locations (red dots) around the 
hydrophone where bathymetry is deep enough for them for perform foraging dives and hence 

produce echolocation clicks. 
 
WORK COMPLETED 
 
The work completed in 2014 includes, 1) Estimation of false positive detections from the Hawai’i data 
set, 2) Design and execution of modeling experiments to understand the effect of modeling broadband 
calls by using its center frequency on the estimation of detection probability. 
 
Outstanding actions for this project include, 1) Finishing the density estimation analysis of the Hawai’i 
data set containing false killer whale echolocation clicks, in view of the results from the modeling 
experiments. This entails, running Monte Carlo simulations for the estimation of the average 
probability of detection (𝑃� in Eq. (1)), and estimating density of false killer whales for the period of the 
data set being used. The probability of detection estimation will be performed by using the clicks 
center frequency, and also by taking the full bandwidth into consideration. Density estimates based on 
these approaches will be compared. 
 
1) Estimation of false positive detections from the Hawai’i data set 
The proportion of false positive detections was estimated by manually checking every 30th auto-
detection made through the software Ishmael against the data set. During the manual check, auto-
detections of reverberated clicks, which often spanned several detections, were considered as false 
positives. Clicks that were observed to be part of a buzz sequence were also treated as false positives. 
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Finally, clicks that looked clipped, that is, that were observed across the entire bandwidth in the 
spectrogram, were also considered false positives. 
 
2) Design and execution of modeling experiments for population density estimation 
A series of modeling experiments were devised with increasing degrees of complexity to examine the 
effect of high frequency and highly broadband calls on density estimates. All experiments were based 
on the single-sensor density estimation formula (Eq. (1)). First, a simple experiment was conducted 
where 1000 points were randomly distributed inside circular areas of radius 10 and 20 km. Different 
detection circles were assumed inside both circular areas, and were defined by the radius where 
transmission loss equaled noise levels. The synthetic data was created using a single frequency and the 
estimation of detection probabilities was performed by using a higher frequency than the data. The 
objective was to show that by using a different frequency in the calculations than that of the original 
data, the detection circle would change and density estimates would be consequently under or 
overestimated. Usually the parameter w in Eq. (1) can be taken as something larger than the expected 
detection range. By taking the large radius of 20 km, increasing radius of detection circles are 
investigated through 20 different realizations of synthetic data and the effect on the variance of density 
estimates. 
 
A more complex synthetic data set was then created by calculating arrival amplitudes for each of the 
100 points randomly distributed inside an 8 km circular area. Arrival amplitudes were convolved with 
a synthetic and highly broadband signal. Realistic ambient noise data was also added to the received 
signals. Analysis of this synthetic data set and its modeling was performed following four distinct 
cases. Case 1 considered a 5 kHz bandwidth centered on the signal’s center frequency (35 kHz) and 
disregarded all multipath arrivals. Case 2 considered the full bandwidth of the signal but still 
disregarded multipath arrivals. Case 3 considered both the full bandwidth and the multipath arrivals. 
Finally, case 4 considered the 5 kHz narrow band around the center frequency and multipath arrivals. 
By knowing the exact number of points, or animals, we could investigate how well the density 
estimator performed and the effect of choosing different frequency bands for the detection and 
modeling components of the analysis. 
 
RESULTS 
 
1) Results on the estimation of false positive detections from the Hawai’i data set 
Checking every 30th auto-detection from the total of 260,973 clicks detected in 2.5-hour period of 
continuous data being analyzed, yielded a rate of false positive detections equivalent to 30.84%. This 
corresponds to parameter �̂� in Eq. (1). 
 
2) Results on the modeling experiments 
For the simple modeling experiment, the expected probability of detection is given by the ratio of the 
detection area by the total area. For example, considering a 5 km detection radius inside of a 20 km 
circle, results in an expected detection probability of 0.0625.  The total number of animals divided by 
the total area considered gives the expected density. So, for the case of 1000 animals inside the 20 km 
circle the expected density is 0.7958. We observed from the results that when the same data frequency 
was used in the calculations, expected and simulated probability of detection and density estimate 
agreed well. On the other hand, by using a higher frequency in the Monte Carlo simulation, the 
probability of detection is underestimated and consequently the density estimate is overestimated. 
These results can be better visualized through Figs. 3 and 4. The synthetic data used in this simple 
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example is shown in Fig. 3 along with the detection range of 5 km at 20 kHz and the corresponding 
detection circle for a frequency of 40 kHz. By increasing the frequency, the detection radius and 
consequently the number of animals inside the circle decreases. 
 

 
Figure 3. Synthetic data created for simple modeling experiment on density estimation  

with 1000 animals uniformly distributed inside a circular area of radius 20 km. Detection  
circle of 5 km at 20 kHz is shown as the blue curve. The red circle represents the corresponding 

detection circle at 40 kHz. 
 
Figure 4 assumes a source level of 155 dB re 1 μPA2/Hz. Source level minus transmission loss for 
sources of frequency 20 and 40 kHz are then plotted against range. Corresponding noise levels at the 
two frequencies considered are also plotted (straight blue and red lines) and the distance where a 
detection occurs is indicated by the dashed black vertical lines. As the frequency increases, the 
detection range decreases. For the case of 1000 animals inside an area of radius 20 km and detection 
circle of 5 km at 20 kHz, by estimating density using a 40 kHz frequency, instead of approximately 0.8 
animals/km2, the calculated density is approximately 3.5 animals/km2. 
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Figure 4. Source level minus transmission loss curves assuming a source level of 155 dB re 1 
μPA2/Hz at 20 (blue curve) and 40 kHz (red curve). Detection distances are indicated by  

black dashed lines. 
 
Finally, taking the 20 km radial area, increasing values of detection circle were assumed (2, 5, 10, 15 
and 18 km) and up to 20 different realizations of synthetic data were assumed. For each data 
realization a density estimate was calculated and the variance of all estimates was taken. It was 
observed that the closer the detection range was from the actual range where animals were considered 
the better the density estimate with lower variance given all realizations of the synthetic data. Such 
result suggests that the parameter w in Eq. (1) should not be arbitrarily big, but within a short margin 
of the expected detection distance. 
 
The analysis process on the complex synthetic data set was the same as would be done with measured 
data. Results of the density estimation calculations, shown in Table 1, indicate good agreement 
between the expected density estimate and the calculated estimate using a narrow bandwidth (5 kHz) 
around the center frequency and no multipath detections. By considering the full bandwidth of the 
synthetic signal (10-60 kHz) in case 2 caused the density estimate to increase. Case 3, which 
considered both full bandwidth and multiple arrivals, yielded a density estimate that was 
approximately double from that of case 2. A close look at transmission loss indicate that this parameter 
could be calculated using the simpler spherical spreading law plus high frequency attenuation for the 
purpose of estimating population density. Moreover, each detected click corresponds to one arrival and 
transmission loss is the sum of all the arrivals. Therefore, another alternative would be to use a ray 
model calculation of arrival times and amplitudes for the specific environment and convolve it with a 
source “click” in the same manner as the synthetic data set was created. That way, the full spectrum of 
the call would be taken into account when estimating density, and multipath could also be taken into 
account. It is also worth noting that multiple arrivals can be taken into account in the calculation of 𝑃�. 
 
From the simple modeling examples it is clear that the 𝑃� estimate should be consistent with detected 
clicks, or what is being measured. However, real measured data present a series of complexities that 
also need to be taken into account such as no ground truth for comparison, clicks are also distributed in 
depth and usually have a narrow beam pattern that needs to be taken into account, for some 
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environments reverberation could be present causing clicks to be non-distinctive and finally the click 
production rate might not be known for the species of interest. 
 

Table I. Results of density estimation analysis on synthetic data set with 100 animals uniformly 
distributed inside a circular area of radius 8 km. Expected density is 497 animals/1000 km2. 

Transmission loss was calculated using Bellhop and results were taken at 600 m. 
 

 
 
IMPACT/APPLICATIONS  
 
The application of recently developed density estimation methods to different data sets and marine 
mammal species provides opportunities to test the methodology and make it more general. It was noted 
however that such methodology is not a “one size fits all,” since, as observed in the present study, the 
frequency band of calls will influence, for example, how to appropriately simulate them. When 
studying species that are considered threatened or endangered in any way, as is the case with false 
killer whales in Hawai’i, it is hoped that density estimation methods from passive acoustics can 
become a tool to help monitor, study and protect those populations. Development of more efficient and 
accurate propagation modeling practices, by performing convergence tests and propagating the field 
straight to each simulated animal instead of performing interpolation, to be used in estimating the 
probability of detection of marine mammal calls is also an interesting component of this project. The 
ultimate goal is to develop easy-to-use software to make density estimation readily available to the 
Navy and to those involved in marine mammal research, monitoring, and mitigation. By improving our 
capabilities for monitoring marine mammals we hope to contribute to minimizing and mitigating the 
impacts of man-made activities on these marine organisms.  
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